Geospatial Data Integration for Assessing Landslide Hazard on Engineered Slopes
نویسنده
چکیده
Road and rail networks are essential components of national infrastructures, underpinning the economy, and facilitating the mobility of goods and the human workforce. Earthwork slopes such as cuttings and embankments are primary components, and their reliability is of fundamental importance. However, instability and failure can occur, through processes such as landslides. Monitoring the condition of earthworks is a costly and continuous process for network operators, and currently, geospatial data is largely underutilised. The research presented here addresses this by combining airborne laser scanning and multispectral aerial imagery to develop a methodology for assessing landslide hazard. This is based on the extraction of key slope stability variables from the remotely sensed data. The methodology is implemented through numerical modelling, which is parameterised with the slope stability information, simulated climate conditions, and geotechnical properties. This allows determination of slope stability (expressed through the factor of safety) for a range of simulated scenarios. Regression analysis is then performed in order to develop a functional model relating slope stability to the input variables. The remotely sensed raster datasets are robustly re-sampled to two-dimensional cross-sections to facilitate meaningful interpretation of slope behaviour and mapping of landslide hazard. Results are stored in a geodatabase for spatial analysis within a GIS environment. For a test site located in England, UK, results have shown the utility of the approach in deriving practical hazard assessment information. Outcomes were compared to the network operator’s hazard grading data, and show general agreement. The utility of the slope information was also assessed with respect to auto-population of slope geometry, and found to deliver significant improvements over the network operator’s existing field-based approaches.
منابع مشابه
An Integrated Approach for Landslide Susceptibility Mapping Using Remote Sensing and GIS
A methodology for landslide susceptibility mapping using an integrated remote sensing and GIS approach is presented. A part of the Darjeeling Himalaya was selected for the model execution. IRS satellite data, topographic maps, field data, and other informative maps were used as inputs to the study. Important terrain factors, contributing to landslide occurrences in the region, were identified a...
متن کاملA web-based GIS for managing and assessing landslide data for the town of Peace River, Canada
Assessment of geological hazards in urban areas must integrate geospatial and temporal data, such as complex geology, highly irregular ground surface, fluctuations in pore-water pressure, surface displacements and environmental factors. Site investigation for geological hazard studies frequently produces surface maps, geological information from borehole data, laboratory test results and monito...
متن کاملApplication of Satellite images and fuzzy set theory in Landslide hazard Mapping in Central Zab
Landslides are one kind of slopes processes have been take place in some area at worldwide and Iran every year, and they are associated with damaged, many people are harmed and losses their properties. The aim of this research landslide hazard assessment in central zab basin in the southwest mountainsides of West-Azerbaijan province, Iran by using information layers and effective factors in lan...
متن کاملApplication of landsat imageries for mapping post-earthquake landslide, case study: 2012 Ahar-Varzegan earthquake, NW Iran
The 2012 Ahar-Varzegan earthquake and its aftershocks have not only caused huge damage with a severe loss of life and property but also induced many geo-hazards with the major type of collapse, creep, slip, debris flow, and fallings that are generally considered as landslide in this study which can cause continuous threats to the affected region. in this study, a semi-automated geo-hazard detec...
متن کاملDeveloping a Model Based on Geospatial Information Systems (GIS) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for Providing the Spatial Distribution Map of Landslide Risk. Case Study: Alborz Province
Landslide is one of these natural hazards which causes a great amount of financial and human damage annually allover the world. Accordingly, identification of areas with landslide threat for implementation of preventive measures in order to confront against the instability of hillsides for reduction of potential threats and related risks is very important. In this research a new method for clas...
متن کامل